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Absence of self-averaging in global optimization problems
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We study the distribution afL+1)-dimensional self-affine lines resulting from the zero-temperature directed
polymer in a random medium or from critical directed percolation problems. The related amplitude ratios
depend on whether the finite size scaling statistics is made over finite segments of the infinite objects or over
the finite objects of diverging size. As a by-product we obtain the correction to scaling exponents for the finite
size scaling of the distribution functions51063-651X%96)50206-(

PACS numbg(s): 05.40:+j, 61.43.Hv

Self-affine objects are abundant in nature. In particular, The statistical distribution of self-affine lines may be de-
they seem to be the typical case when interfaces are creatsdribed by the functiorpxlyxz(yl,yz), giving the conditional

by noisy processed—3]. To mention an everyday example, probability density that the curvg(x) passes the point
the fracture surface created'when, say, a piece .of' pottgrw(z,yz) provided it passesxg,y,). It can be assumed that
breaks, or a sheet of paper is torn, shows self-affinity typithe function only depends on the differencég=x,—x;

cally over more than two orders of magnitude variation inagndAy=y,—y, and self-affinity imposes the invariance
the length scalef4—8]. Global optimization processes like

the determination of the minimum energy conformation of 1
directed polymer$9,10] in a random medium or critical di- Pax(Ay)= Fpr,)\(Ay/)&) (€]
rected percolatiof11] backbones lead to self-affine lines
and they are both good candidates for describing surface o . .
lines resulting from two-dimensiond1+1)-dimensiongl ~ °" the distribution function wherg is the roughness or
breaking processed,8]. Due to the fact that the roughness Hurst exponer_wt. We .do not consider here multiaffine objects
exponents for these two models are rather close to each oth 13 .The dlst_r|but|on leads to the momerity kth order
(2/3 and 0.63Bthere is a need to characterize them in morec0rrelation functions
detail in order to help distinguish between them.

The moments of the distribution functions of height dif- Cu(AX) =
ferences on self-affine lines have attracted interest in recent
years for two reasons. First, there are cases where the differ-
ent moments scale differently leading to multiaffinity Due to the scaling assumptidfh) we haveC,(Ax)o|Ax|?.
[12,13. Second, the non-Gaussian character of the distributhe distribution is therefore best characterized by the ampli-
tion of directed polymer lines was investigated this Wwa#|. tude ratios:

In this paper we investigate the moments of the height
difference distributions in two self-affine objects ir-1 di- R(AX)=C(AX)/Cy(AX). 3)
mensions: (1) The minimum-energy conformation of di-
rected polymers in random med[&,10], and (2) critical
“pinning lines” in directed percolatiori15,16.

We have studied two case$) The distribution of height
differences between the end points of the self-affine line
where the sizek were increasing angi) the distribution of

height differences between points at distancewhere Both directed polymers and critical directed percolation
X<L—c butx—o. The striking result is that the two limits - ,5ih are results of global optimization problems. In order to
are not equivalent, i.e., from the point of view of the Mo- jescribe these two problems, we start with a square lattice at
ments of the distributions the cases-L; L—% and  4g0 yith respect to the two directionsandy. We imagine
L—co; x—ce are not interchangeable. The scaling of they,,t he size of the lattice is in thex direction andW in the
moments is, however, always described by the correspondw&g direction. To each nodex(y) in the lattice, we assign a
unique universal exponent. random numbee,, ,, obtained from some probability distri-
bution — for example, a uniform distribution between zero

and one. The problem now consists of identifying the path

*Permanent address: Department of Physics, Norwegian Univery(x) betweenx=0 andx=L for which the sum of the ran-
sity of Science and Technology, N-7034 Trondheim, Norway. Elec'dom numbers is minimal

tr9nic address: Alex.Hansen@phys.unit.no

Permanent address: Department of Theoretical Physics, Institute
of Physics, Technical University of Budapest, H-1111 Budapest, E:min(E €x,y(x))
Hungary. Electronic address: kertesz@phy.bme.hu y(x) \ X

o 1k
f ~_dAy[Ay[*pax(Ay)| 2)

The linear sizes of the objects are denoted_byVe concen-
trate on the question whether lim,.lim, _ R (AX) is
equivalent to lim_.limsy_ R(AX)=Ilim__.R(L) and
How these guantities are related to the ratios resulting from
Gaussian distributions.
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We may interpret the path as being a polymer without over-

hangs — hencalirected — which is strongly interacting 1.9 |
with a surrounding medium with quenched disorder. This
interaction gives rise to a local interaction eneggy,,, and 1.7+

the path determined through E@) is the ground state con- '
figuration of the polymer at zero temperature. It has been 157

shown [9,10] that in (1+1) dimensions the ground state _ 3“\
conformation of the directed polymer is self-affine with a < W

roughness exponedt=2/3. This result is valid as long as the - 147 —_—— .
distribution of interaction energies falls off towards negative
values at least as fast as a power lavel1fc, whereu. is a 09|

dimension-dependent critical val@iz7], which, e.g., for the —wwvv\/\/\/\
hierarchical latticg[18] is w.=6, or if the distribution to- 0.7 |

wards positive values is not so broad that a single energy

€(xy) dominates all others. 055 02 04 06 0.8
In the latter case we may substitute the sum in @by /L0
a maximum,

FIG. 1. The moment ratioR, for the directed polymer problem

) as calculated for thé limit. The extrapolated values marked for
E=min| max e(x,y(x))) . (5)  L— agree well with those of Ref14] and are given in Table I.
yx)\ X The lines connect the data points.

This is in fact a formulation of the directgmkrcolationprob-  nique. We define the matrix elemef, .y as the minimum
lem [19,20. The max in(5) picks the bottlenecks for all energy of a directed polymer starting»at0 andy=0 and
possible lines and the min in the front assures that the optiending at &,y). The relation between the miminum energies
mal, i.e., the critical percolation line is chosen. For a systenat level x and x+1 is then simplyE . 1,)=min(Exy-1
of sizeL this is not a unique definition since there could be+ €. 1), Ey+ 1)t €xt1y))- Likewise, in the directed
several lines satisfying the conditi¢®) corresponding to the percolation problem, we update a transfer matky,
whole critical directed percolation backbone. However, therdy the rule [20] E . 1y)=min(MaxExy-1).€x+1y))
are ways to suppress this ambiguity. One is the followingmax€y+1).€x+1y)))-
The maximal value o, ,y on the backbone divides it into In the directed polymer problem, once a matrix element
two pieces. Now one can look for the maximal values leftE yy has been assigned to each node in the lattice, the mini-
and right from this point and so on until a unique line is mum energy conformatiory(x) is easily identifiable: We
determined. This global optimization model was recentlystart by identifying the minimungE,_ ). Once this ele-
formulated by Roux and Zhan@1]. Another possibility is ment has been identified, we have the end point of the mini-
that one chooses the lowermost line which corresponds to thmum energy configuration. We then identify the minimum of
pinning line in models of fluid displacement in a randomthe two neighboring elementsE;,_; 1,41y and
environment[15,16. We applied in our investigations the E,_ _;,_1). Once this element has been identified, we
latter choice. then move on to identifying the minimum matrix element
For the critical directed percolation line the roughness examong the two neighbors witk=L — 2 of this element. Do-
ponent is{=v, /v ~0.633, wherev, =1.733-0.001 is the ing this “burning” backwards recursively, untk=0 has
correlation length exponent in they direction and been reached, the entire minimum-energy configuration is
v=1.097+0.001 is the correlation length exponent in thefinally mapped out.
x direction. The numerical values are based on series expan- A similar method is used to map out the directed per-
sions[22,23. colation path. However, the ambiguity mentioned above
In order to identify the minimum-energy path in the shows up here in the following way: There is typically a
directed polymer problem, we use a transfer matrix techiarge number of paths with the same “energ¥ )

TABLE |. Extrapolated amplitude ratioR, for the directed polymer, the critical directed percolation
lines, and random walks in tHe andx limits. The last column contains the exact Gaussian values (8m

k Dir. pol. Dir. pol. Dir. perc. Dir. perc. Rand. walk Rand. walk Gauss.
L limit x limit L limit X limit L limit x limit
1 0.807 0.800 0.675 0.793 0.797 0.796 0.7979
3 1.157 1.164 1.265 1.170 1.169 1.169 1.1686
4 1.291 1.306 1.475 1.317 1.318 1.317 1.3161
5 1.409 1.432 1.65 1.450 1.451 1.450 1.4488
6 1.515 1.547 1.79 1571 1.574 1.573 1.5704
7 1.610 1.652 191 1.683 1.687 1.686 1.6833
8 1.698 1.750 2.01 1.775 1.793 1.792 1.7892
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FIG. 2. The moment ratioR, for the directed polymer problem, FIG. 3. The moment ratioR, for the critical directed percola-

as calculated for thex limit. The extrapolation was carried out tion lines as calculated for the limit. The extrapolation was car-
according to(9) with wpoyme=0.67 and it is indicated by the ried out according t¢9) With wpercoiaion= 0-4. The values are indi-

straight lines forAx—c. The extrapolated values are listed in cated forL— and are given in Table I. The lines connect the data
Table 1. points.

given by Eq.(4). This degeneracy results from situations lines justify this choice. In fact, we observed that the
where in Eq.(5) the two expressions ma{, 1),€x1y)) straightness of the lines depends strongly on the value of
and maxEy+1).Ex+1y)) are equal. When this situation oc- w yqymer but the extrapolated ratio valug$able ) do not.
curs, we choose the path passing through the poinThe lines for differenk values bend foAx approaching-
(x,y—1). The path we have thus identified corresponds tashowing finite size effects. Of course, fAx=L we should

the shape of an interface in a medium with quenched disorebtain the same limits as for Fig. 1. The interesting result
der at the depinning transitidi5,16: We therefore refer to comes from the comparison of the two limits. The precision
the path thus identified as a “pinning line.” of our data is certainly good enough to conclude that the two

Our statistics is based oM runs with W=2000, limiting ratios differ from each other significantly. Since the
L=1000, andN= 10" for the lim,,_, lim__.. cases(in the errors become larger for the higher valuekdhe Gaussian
following to be referred to as thé limit) and W=400, behavior cannot be ruled o(fable )) in the x limit.

L=2000, andN=5x 10" for the lim__.lim,, ... cases(to We carried out a similar calculation for the critical di-
be referred to as the limit) where the largeshx wasL/2. rected percolation lines. Theé limit (Fig. 3) shows in

We first checked the scaling assumption in thiémit and  this case a strongér dependence than in the case of direc-
concluded that the distributions can be characterized with theed polymers, so we had to apply an extrapolation procedure
roughness exponents=0.662 for the directed polymer and as given by (7). The fit is acceptably good with
{=0.638 for directed percolation, in good agreement with
the generally accepted values.

Halpin-Healy concluded14] that the ratiosR, (L) for 171
directed polymers in (1) dimensions are not Gaussian.
The Gaussian ratios can be calculated analytically from
the assumption

ex — (Ay)?207] ©® 3
o

1
x(Ay)=

with o (Ax)¢ resulting in Re=v2[T((k+1)/2)/ 7]k
Halpin-Healy studied th& limit and our calculationsFig. 1,
Table ) are in full agreement with his results. Figure 2
shows the calculations of the rati®&(Ax) for the directed
polymers in thex limit. In order to extrapolate the data for 0.7

. : ; 0.0 0.2 04 0.6 0.8
Ax—oo we applied the concept of corrections to scaling: 1(Ax)°

1.2

I

Ri(AX) = Ri(Ax—00) + A /AX?, () FIG. 4. The moment ratioR, for the critical directed percola-

. . . tion lines, as calculated for thelimit. The extrapolation was car-
where the value ob is determined by the possibly smooth- \joq oyt according t¢9) with @percolatior= 0-35 and it is indicated by

est extrapolation. The curves in Fig. 2 were obtained Withne siraight lines fonx— . The extrapolated values are given in
wpoymer=0.67 (perhaps 2/3?and the straight parts of the tapje |.
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®percolation=0.4+£0.1 and the limiting ratios are again non-  This finding can be interpreted in the following way. In
Gaussian. the L limit we take the objects of sizk, carry out the sta-

For the x limit (Fig. 4 we usedwpercopaio=0-35. The tistics on them and let the system sizegjo toe. Due to the

finite size effects are somewhat more pronounced than fofga;rtntr::]tewgi;grt‘g'?ﬁé gcl?hb:rl ?hpet'n(;'g.:gtosn L?rzgglregsn;‘f‘jggt%%
the directed polymer case. However, we see again that th J

e . - change, i.e., the objects at sitg are different from the
L andx limits are not interchangeable. Moreover, thimit objects atL,. On the other hand, if we consider increasing

leads to \_/all_Jes_wmch are very clpsg to the_Gguss_mn valuepsUlrts of large samplesx(limit) the objects on which the
strongly indicating that in this limit the distribution ap- statistics is carried out do not change. The global restriction
proaches a Gaussian. The results for the directed percolatighich is imposed onto the ensemble of the lines with the
are also summarized in Table I. same scaling exponents results in the change of the distribu-
For comparison, we also generated a sample of similation functions. We can therefore conclude that in the consid-
size of random walks. The scaling exponent is in this cas@red models self-averaging is valid for the scaling exponents
{=1/2. Carrying out the extrapolations Wit =1, we but not for the distributions. This has a bearing on the com-

get values which are in excellent agreement with the Gausd2arison between experimental and numerical studies of
ian ones for both. andx limits indicating that the effect we '0UgN surfaces: Experimental measurements are typically

Lo : . . carried out overpiecesof the rough surface in question
have found for the global optimization problems is real S€&vhich places them in the limit, while numerical studies are

Table 1. more easily carried out in thie limit
Our main result is therefore that although the scaling ex- y '
ponents are robust with respect to theand x limits, the We thank D. Stauffer and D.E. Wolf for discussions. We

distributions do depend on them. The distributions are genfurthermore thank D. Stauffer for the hospitality shown in
erally considered to be universal, e.g., the raRgshould be  Cologne, and H. J. Herrmann and D.E. Wolf for the invita-
independent of the type of the lattice, extent of short-rangeion to the HLRZ where part of this work was done. Support
interaction, etc. Our result indicates, however, that the limitby OTKA T016568 and from the Norwegian Science Coun-

ing distribution is sensitive to the order of the limits. cil is acknowledged.
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