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We study the distribution of~111!-dimensional self-affine lines resulting from the zero-temperature directed
polymer in a random medium or from critical directed percolation problems. The related amplitude ratios
depend on whether the finite size scaling statistics is made over finite segments of the infinite objects or over
the finite objects of diverging size. As a by-product we obtain the correction to scaling exponents for the finite
size scaling of the distribution functions.@S1063-651X~96!50206-0#

PACS number~s!: 05.40.1j, 61.43.Hv

Self-affine objects are abundant in nature. In particular,
they seem to be the typical case when interfaces are created
by noisy processes@1–3#. To mention an everyday example,
the fracture surface created when, say, a piece of pottery
breaks, or a sheet of paper is torn, shows self-affinity typi-
cally over more than two orders of magnitude variation in
the length scales@4–8#. Global optimization processes like
the determination of the minimum energy conformation of
directed polymers@9,10# in a random medium or critical di-
rected percolation@11# backbones lead to self-affine lines
and they are both good candidates for describing surface
lines resulting from two-dimensional@~111!-dimensional#
breaking processes@7,8#. Due to the fact that the roughness
exponents for these two models are rather close to each other
~2/3 and 0.633! there is a need to characterize them in more
detail in order to help distinguish between them.

The moments of the distribution functions of height dif-
ferences on self-affine lines have attracted interest in recent
years for two reasons. First, there are cases where the differ-
ent moments scale differently leading to multiaffinity
@12,13#. Second, the non-Gaussian character of the distribu-
tion of directed polymer lines was investigated this way@14#.

In this paper we investigate the moments of the height
difference distributions in two self-affine objects in 111 di-
mensions:~1! The minimum-energy conformation of di-
rected polymers in random media@9,10#, and ~2! critical
‘‘pinning lines’’ in directed percolation@15,16#.

We have studied two cases:~i! The distribution of height
differences between the end points of the self-affine lines
where the sizesL were increasing and~ii ! the distribution of
height differences between points at distancex where
x!L→` but x→`. The striking result is that the two limits
are not equivalent, i.e., from the point of view of the mo-
ments of the distributions the casesx→L; L→` and
L→`; x→` are not interchangeable. The scaling of the
moments is, however, always described by the corresponding
unique universal exponent.

The statistical distribution of self-affine lines may be de-
scribed by the functionpx1 ,x2(y1 ,y2), giving the conditional

probability density that the curvey(x) passes the point
(x2 ,y2) provided it passes (x1 ,y1). It can be assumed that
the function only depends on the differencesDx5x22x1
andDy5y22y1 and self-affinity imposes the invariance

pDx~Dy!5
1

lz pDx/l~Dy/lz! ~1!

on the distribution function wherez is the roughness or
Hurst exponent. We do not consider here multiaffine objects
@12,13#. The distribution leads to the moments~or kth order
correlation functions!:

Ck~Dx!5F E
2`

`

dDyuDyukpDx~Dy!G1/k. ~2!

Due to the scaling assumption~1! we haveCk(Dx)}uDxuz.
The distribution is therefore best characterized by the ampli-
tude ratios:

Rk~Dx!5Ck~Dx!/C2~Dx!. ~3!

The linear sizes of the objects are denoted byL. We concen-
trate on the question whether limDx→`limL→`Rk(Dx) is
equivalent to limL→`limDx→LRk(Dx)5 limL→`Rk(L) and
how these quantities are related to the ratios resulting from
Gaussian distributions.

Both directed polymers and critical directed percolation
paths are results of global optimization problems. In order to
describe these two problems, we start with a square lattice at
45° with respect to the two directionsx andy. We imagine
that the size of the lattice isL in thex direction andW in the
y direction. To each node (x,y) in the lattice, we assign a
random numbere(x,y) obtained from some probability distri-
bution — for example, a uniform distribution between zero
and one. The problem now consists of identifying the path
y(x) betweenx50 andx5L for which the sum of the ran-
dom numbers is minimal,

E5min
y~x!

S (
x
e
„x,y~x!…D . ~4!
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We may interpret the path as being a polymer without over-
hangs — hencedirected— which is strongly interacting
with a surrounding medium with quenched disorder. This
interaction gives rise to a local interaction energye(x,y) , and
the path determined through Eq.~4! is the ground state con-
figuration of the polymer at zero temperature. It has been
shown @9,10# that in (111) dimensions the ground state
conformation of the directed polymer is self-affine with a
roughness exponentz52/3. This result is valid as long as the
distribution of interaction energies falls off towards negative
values at least as fast as a power law, 1/e11mc, wheremc is a
dimension-dependent critical value@17#, which, e.g., for the
hierarchical lattice@18# is mc56, or if the distribution to-
wards positive values is not so broad that a single energy
e(x,y) dominates all others.

In the latter case we may substitute the sum in Eq.~4! by
a maximum,

E5min
y~x!

Smax
x

e
„x,y~x!…D . ~5!

This is in fact a formulation of the directedpercolationprob-
lem @19,20#. The max in ~5! picks the bottlenecks for all
possible lines and the min in the front assures that the opti-
mal, i.e., the critical percolation line is chosen. For a system
of sizeL this is not a unique definition since there could be
several lines satisfying the condition~5! corresponding to the
whole critical directed percolation backbone. However, there
are ways to suppress this ambiguity. One is the following:
The maximal value ofe(x,y) on the backbone divides it into
two pieces. Now one can look for the maximal values left
and right from this point and so on until a unique line is
determined. This global optimization model was recently
formulated by Roux and Zhang@21#. Another possibility is
that one chooses the lowermost line which corresponds to the
pinning line in models of fluid displacement in a random
environment@15,16#. We applied in our investigations the
latter choice.

For the critical directed percolation line the roughness ex-
ponent isz5n' /n i'0.633, wheren'51.73360.001 is the
correlation length exponent in they direction and
n i51.09760.001 is the correlation length exponent in the
x direction. The numerical values are based on series expan-
sions@22,23#.

In order to identify the minimum-energy path in the
directed polymer problem, we use a transfer matrix tech-

nique. We define the matrix elementE(x,y) as the minimum
energy of a directed polymer starting atx50 andy50 and
ending at (x,y). The relation between the miminum energies
at level x and x11 is then simplyE(x11,y)5min(E(x,y21)
1e(x11,y) ,E(x,y11)1e(x11,y)). Likewise, in the directed
percolation problem, we update a transfer matrixE(x,y)
by the rule @20# E(x11,y)5min„max(E(x,y21) ,e(x11,y)),
max(E(x,y11) ,e(x11,y))….

In the directed polymer problem, once a matrix element
E(x,y) has been assigned to each node in the lattice, the mini-
mum energy conformationy(x) is easily identifiable: We
start by identifying the minimumE(x5L,y) . Once this ele-
ment has been identified, we have the end point of the mini-
mum energy configuration. We then identify the minimum of
the two neighboring elements E(x5L21,y11) and
E(x5L21,y21) . Once this element has been identified, we
then move on to identifying the minimum matrix element
among the two neighbors withx5L22 of this element. Do-
ing this ‘‘burning’’ backwards recursively, untilx50 has
been reached, the entire minimum-energy configuration is
finally mapped out.

A similar method is used to map out the directed per-
colation path. However, the ambiguity mentioned above
shows up here in the following way: There is typically a
large number of paths with the same ‘‘energy’’E

„x,y(x)…

FIG. 1. The moment ratiosRk for the directed polymer problem
as calculated for theL limit. The extrapolated values marked for
L→` agree well with those of Ref.@14# and are given in Table I.
The lines connect the data points.

TABLE I. Extrapolated amplitude ratiosRk for the directed polymer, the critical directed percolation
lines, and random walks in theL andx limits. The last column contains the exact Gaussian values from~8!.

k Dir. pol. Dir. pol. Dir. perc. Dir. perc. Rand. walk Rand. walk Gauss.
L limit x limit L limit x limit L limit x limit

1 0.807 0.800 0.675 0.793 0.797 0.796 0.7979
3 1.157 1.164 1.265 1.170 1.169 1.169 1.1686
4 1.291 1.306 1.475 1.317 1.318 1.317 1.3161
5 1.409 1.432 1.65 1.450 1.451 1.450 1.4488
6 1.515 1.547 1.79 1.571 1.574 1.573 1.5704
7 1.610 1.652 1.91 1.683 1.687 1.686 1.6833
8 1.698 1.750 2.01 1.775 1.793 1.792 1.7892
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given by Eq. ~4!. This degeneracy results from situations
where in Eq.~5! the two expressions max(E(x,y21) ,e(x11,y))
and max(E(x,y11) ,e(x11,y)) are equal. When this situation oc-
curs, we choose the path passing through the point
(x,y21). The path we have thus identified corresponds to
the shape of an interface in a medium with quenched disor-
der at the depinning transition@15,16#: We therefore refer to
the path thus identified as a ‘‘pinning line.’’

Our statistics is based onN runs with W52000,
L51000, andN5105 for the limDx→LlimL→` cases~in the
following to be referred to as theL limit ! and W5400,
L52000, andN553104 for the limL→`limDx→` cases~to
be referred to as thex limit ! where the largestDx wasL/2.

We first checked the scaling assumption in theL limit and
concluded that the distributions can be characterized with the
roughness exponentsz50.662 for the directed polymer and
z50.638 for directed percolation, in good agreement with
the generally accepted values.

Halpin-Healy concluded@14# that the ratiosRk(L) for
directed polymers in (111) dimensions are not Gaussian.
The Gaussian ratios can be calculated analytically from
the assumption

pDx~Dy!5
1

A2ps2
exp@2~Dy!2/2s2# ~6!

with s}(Dx)z resulting in Rk5A2@G„(k11)/2…/Ap#1/k.
Halpin-Healy studied theL limit and our calculations~Fig. 1,
Table I! are in full agreement with his results. Figure 2
shows the calculations of the ratiosRk(Dx) for the directed
polymers in thex limit. In order to extrapolate the data for
Dx→` we applied the concept of corrections to scaling:

Rk~Dx!5Rk~Dx→`!1Ak /Dx
v, ~7!

where the value ofv is determined by the possibly smooth-
est extrapolation. The curves in Fig. 2 were obtained with
vpolymer50.67 ~perhaps 2/3?! and the straight parts of the

lines justify this choice. In fact, we observed that the
straightness of the lines depends strongly on the value of
v polymer but the extrapolated ratio values~Table I! do not.
The lines for differentk values bend forDx approachingL
showing finite size effects. Of course, forDx5L we should
obtain the same limits as for Fig. 1. The interesting result
comes from the comparison of the two limits. The precision
of our data is certainly good enough to conclude that the two
limiting ratios differ from each other significantly. Since the
errors become larger for the higher values ofk the Gaussian
behavior cannot be ruled out~Table I! in the x limit.

We carried out a similar calculation for the critical di-
rected percolation lines. TheL limit ~Fig. 3! shows in
this case a strongerL dependence than in the case of direc-
ted polymers, so we had to apply an extrapolation procedure
as given by ~7!. The fit is acceptably good with

FIG. 2. The moment ratiosRk for the directed polymer problem,
as calculated for thex limit. The extrapolation was carried out
according to~9! with vpolymer50.67 and it is indicated by the
straight lines forDx→`. The extrapolated values are listed in
Table I.

FIG. 3. The moment ratiosRk for the critical directed percola-
tion lines as calculated for theL limit. The extrapolation was car-
ried out according to~9! with vpercolation50.4. The values are indi-
cated forL→` and are given in Table I. The lines connect the data
points.

FIG. 4. The moment ratiosRk for the critical directed percola-
tion lines, as calculated for thex limit. The extrapolation was car-
ried out according to~9! with vpercolation50.35 and it is indicated by
the straight lines forDx→`. The extrapolated values are given in
Table I.
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vpercolation50.460.1 and the limiting ratios are again non-
Gaussian.

For the x limit ~Fig. 4! we usedvpercolation50.35. The
finite size effects are somewhat more pronounced than for
the directed polymer case. However, we see again that the
L andx limits are not interchangeable. Moreover, thex limit
leads to values which are very close to the Gaussian values
strongly indicating that in this limit the distribution ap-
proaches a Gaussian. The results for the directed percolation
are also summarized in Table I.

For comparison, we also generated a sample of similar
size of random walks. The scaling exponent is in this case
z51/2. Carrying out the extrapolations withvwalk51, we
get values which are in excellent agreement with the Gauss-
ian ones for bothL andx limits indicating that the effect we
have found for the global optimization problems is real; see
Table 1.

Our main result is therefore that although the scaling ex-
ponents are robust with respect to theL and x limits, the
distributions do depend on them. The distributions are gen-
erally considered to be universal, e.g., the ratiosRk should be
independent of the type of the lattice, extent of short-range
interaction, etc. Our result indicates, however, that the limit-
ing distribution is sensitive to the order of the limits.

This finding can be interpreted in the following way. In
the L limit we take the objects of sizeL, carry out the sta-
tistics on them and let the system sizeL go to`. Due to the
fact that we consider global optimization problems as we go
from one size to the other the objects under consideration
change, i.e., the objects at sizeL1 are different from the
objects atL2 . On the other hand, if we consider increasing
parts of large samples (x limit ! the objects on which the
statistics is carried out do not change. The global restriction
which is imposed onto the ensemble of the lines with the
same scaling exponents results in the change of the distribu-
tion functions. We can therefore conclude that in the consid-
ered models self-averaging is valid for the scaling exponents
but not for the distributions. This has a bearing on the com-
parison between experimental and numerical studies of
rough surfaces: Experimental measurements are typically
carried out overpiecesof the rough surface in question
which places them in thex limit, while numerical studies are
more easily carried out in theL limit.
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